從LeetCode學演算法 - 119 Graph (2) / DFS (21)
0797. All Paths From Source to Target (Medium)
--
寫在前面:
(基礎+進階+面試篇)從 LeetCode 學演算法 + 面試成功指南
(3591元 特價中: 2023/06/30 23:59後截止)
https://hiskio.com/bundles/eCP23B397?s=tc
(3990元 長期有效) https://bit.ly/lc2022all
容筆者工商一下,
「從Leetcode學演算法|進階篇」這次選了40道難度加深的LeetCode題目,
同樣也會細部解說對應的技巧及須要掌握的演算法!
同時這次購買進階篇的話,
額外還加贈「從Leetcode學演算法|面試篇」!
當中包含了面試準備須知分享,及訪談國內外不同經驗的工程師,
讓你不論是想走前端/後端/一般軟工或者是想找國外的工作,
是初學想轉職還是正在工作,都能夠從中得到收穫呦!
有興趣的朋友可以使用下面的優惠~
「從Leetcode學演算法|進階篇」+「從Leetcode學演算法|面試篇」:
https://bit.ly/lc2022adv
請幫我隨手點開下面的SHOW EMBED並按5個like~
喜歡的話也可以幫我拍拍手~
(按讚不用錢,感謝支持寫作~)
Question:
Given a directed acyclic graph (DAG) of n
nodes labeled from 0
to n - 1
, find all possible paths from node 0
to node n - 1
and return them in any order.
The graph is given as follows: graph[i]
is a list of all nodes you can visit from node i
(i.e., there is a directed edge from node i
to node graph[i][j]
).
Example 1:
Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Example 2:
Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
Constraints:
n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i
(i.e., there will be no self-loops).- All the elements of
graph[i]
are unique.